Published in «Russian Journal of Innovation Economics»3 / 2019
DOI: 10.18334/vinec.9.3.40985

Fuzzy-multiple forecast of educational results based on indicators of the use of digital educational resources

Groshev Aleksandr Romanovich, Surgut State University, Russia

Grosheva Tatiana Aleksandrovna, Ugra State University, Russia

Bezuevskaya Valeriya Aleksandrovna, Surgut State University, Russia

Нечетко-множественный прогноз образовательных результатов на основе показателей использования цифровых образовательных ресурсов - View in Russian

Abstract:
A fuzzy-multiple model of predicting the results of educational institutions based on a system of fuzzy-logical conclusions with several input variables has been developed. To build the model, we used the results of monitoring the digital educational environment of 206 educational institutions of 16 municipalities of the Khanty-Mansiysk Autonomous Okrug in relation to the directions of using digital (electronic) educational resources in the implementation of educational activities at the level of primary general, basic general and secondary general education. The model allows predicting the most probable value of the index of educational results for a specific educational organization based on the numerical values of 12 indicators characterizing the use of digital educational resources in the educational process.

Keywords:

digital educational resources, index of educational outcomes, system of fuzzy-logic conclusions

JEL-Classification: C15, C59, I21

Citation:
Groshev A.R., Grosheva T.A., Bezuevskaya V.A. (2019). Fuzzy-multiple forecast of educational results based on indicators of the use of digital educational resources [Nechetko-mnozhestvennyy prognoz obrazovatelnyh rezultatov na osnove pokazateley ispolzovaniya tsifrovyh obrazovatelnyh resursov]. Russian Journal of Innovation Economics, 9(3). (in Russian). – doi: 10.18334/vinec.9.3.40985.


References (transliterated):
Blyumin S.L., Shuykova I.A., Saraev P.V., Cherpakov I.V. (2002). Nechetkaya logika: algebraicheskie osnovy i prilozheniya [Fuzzy logic: algebraic foundations and applications] Lipetsk: LEGI. (in Russian).
Konysheva L.K., Nazarov D.M. (2011). Osnovy teorii nechetkikh mnozhestv [Fundamentals of the theory of fuzzy sets] SPb.: Piter. (in Russian).
Kramarov S., Temkin I., Khramov V. (2017). The principles of formation of united geo-informational space based on fuzzy triangulation Procedia Computer Science. (120). 835-843. doi: 10.1016/j.procs.2017.11.315 .
Kramarov S.O., Sakharova L.V., Khramov V.V. (2017). Myagkie vychisleniya v menedzhmente: upravlenie slozhnymi mnogofaktornymi sistemami na osnove nechetkikh analog-kontrollerov [Soft computing in management: management of complex multivariate systems based on fuzzy analog controllers]. The scientific bulletin of the Southern Institute of Management. (3(19)). 42-51. (in Russian).
Zade L.A. (1976). Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennyh resheniy [The concept of a linguistic variable and its application to the adoption of approximate solutions] M.: Mir. (in Russian).
Pasport proekta «Tsifrovaya obrazovatelnaya sreda Khanty-Mansiyskogo avtonomnogo okruga – Yugry» 049-P00 ot 13.11.2018 : tekst s izmeneniyami i dopolneniyamiDepobr-molod.admhmao.ru. Retrieved June 10, 2019, from https://depobr-molod.admhmao.ru/natsionalnyy-proekt-obrazovanie/regionalnyy-uroven/tsifrovaya-obrazovatelnaya-sreda/2282886/pasport-proekta